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Abstract. A simplified scheme for the investigation of cooperative effects in the quantum jump statistics
of small numbers of fluorescing atoms and ions in a trap is presented. It allows the analytic treatment
of three dipole-dipole interacting four-level systems which model the relevant level scheme of Ba+ ions.
For the latter, a huge rate of double and triple jumps was reported in a former experiment and the huge
rate was attributed to the dipole-dipole interaction. Our theoretical results show that the effect of the
dipole-dipole interaction on these rates is at most 5% and that for the parameter values of the experiment
there is practically no effect. Consequently it seems that the dipole-dipole interaction can be ruled out as
a possible explanation for the huge rates reported in the experiment.

PACS. 42.50.Ar Photon statistics and coherence theory – 42.50.Ct Quantum description of interaction of
light and matter; related experiments – 42.50.Fx Cooperative phenomena in quantum optical systems

1 Introduction

The dipole-dipole interaction between atoms and
molecules is of fundamental importance in nature as it
gives rise to the all pervading van der Waals force. In
physics, cooperative effects in the radiative behaviour of
atoms due to their mutual dipole-dipole interaction have
also attracted considerable interest in the literature [1],
and they may play a role for possible quantum comput-
ers based on trapped ions or atoms. Atoms exhibiting
macroscopic light and dark periods in their fluorescence
may provide a sensitive test for such cooperative effects.
Such macroscopic light and dark periods can occur in a
multi-level system if the electron is essentially shelved in
a metastable state, thereby causing the photon emission
to cease [2]. Two such systems accordingly exhibit a dark
period, a bright period of the same intensity as that of
a single system, and a bright period of double intensity.
Three systems exhibit an additional bright period of three-
fold intensity. The dipole-dipole interaction may now alter
the statistics of these periods.

In an experiment with two and three Ba+ ions [3,4]
a large number of double and triple jumps, i.e. jumps by
two or three intensity steps within a short resolution time,
had been observed, by far exceeding the number expected
for independent atoms. Theoretically, the quantitative ex-
planation of such large cooperative effects for distances
of the order of ten wave lengths of the strong transition
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proved difficult [5–10]. On the other hand, experiments
with different ions showed no observable cooperative ef-
fects [11], in particular none were seen for Hg+ for a dis-
tance of about 15 wave lengths [12]. More recently, effects
similar to reference [3] were found in an experiment with
Ca+ ions [13], in contrast to another, comparable, exper-
iment [14]. Neither were cooperative effects found exper-
imentally in an extensive analysis of the quantum jump
statistics of two trapped Sr+ ions [15]. Skornia et al. [16]
recently put forward a new proposal for observing the
dipole-dipole interaction of two V systems.

For two V systems numerical [17] and analytical [18]
investigations of the effect of the dipole-dipole interac-
tion showed an increase of up to 30% in the double jump
rate when compared to independent systems. However,
the systems used in the experimental setups of refer-
ences [3,12,19] were not V systems so that a direct com-
parison between theory and experiment was not possible.
For this reason the present authors extended their investi-
gation to two other systems [20], namely a D shaped sys-
tem modeling the Hg+ ions used in reference [12] and a
four-level system (see Fig. 1) modeling the Ba+ ions of ref-
erences [3,4]. For two D systems cooperative effects in the
same order of magnitude as for the V systems were found
for ion-distances of a few wavelengths of the laser-driven
transition. For larger distances practically no effects where
found, in agreement with the experiments [12] and with
the results of reference [21]. In contrast, only negligible
effects for a wide range of ion-distances were found for
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Fig. 1. (a) Relevant level scheme of Ba+ [3,4]. For the effective
four level system the circled levels are merged to a single level.
(b) Effective four-level system for Ba+. Strong coherent driving
of the |1〉 − |3〉 transition by a laser, weak incoherent driving
of the |1〉 − |4〉 transition by a lamp, weak decay of level |2〉.

two of the four level-systems. Although this result con-
tradicts the findings of references [3,4] a direct quanti-
tative comparison with the experiments was not possible
since explicit experimental data were only provided for
three Ba+ ions. For this reason three of the D and V sys-
tems were investigated in reference [22]. In comparison to
two of either systems the cooperative effects found in this
case are considerably higher, namely up to 170% devia-
tion from the case of independent atoms. However, since
the complexity increases dramatically for higher-level sys-
tems, this approach could not be applied to three of the
four-level systems which we use to describe the situation
of reference [3].

In the present paper a simplified approach for the cal-
culation of the transition rate will be presented with which
three four-level systems can now be treated analytically.
This approach is valid for atoms with a level structure in
which the transitions between the different intensity peri-
ods take place incoherently, i.e. via decay or via incoherent
driving. The transition rates for three dipole-interacting
four-level systems will be calculated. Cooperative effects
for this system are found to be less than 5% and neg-
ligible for the experimental parameters of reference [3].
Consequently it seems that the dipole-dipole interaction
can be ruled out as a possible explanation for the huge
effects measured in the latter experiment.

|1〉

|2〉

|3〉

A3

A2

A1

strong laser, Ω3 =⇒

|1〉

Fig. 2. Three-level system in D configuration with fast tran-
sitions (solid lines) and slow transitions (dashed lines).

In Section 2 the Bloch equation approach is recapitu-
lated. On this basis the new method is presented in Sec-
tion 3 and applied to the four-level systems in Section 4.
In Section 5 the possibility of a translation of this method
to V system type level structures is discussed.

2 Bloch equation approach

The fluorescence, i.e. the stochastic sequence of photon
emissions, of a system consisting of a number of atoms
with macroscopic bright and dark periods can be described
by a telegraph process. This process is characterized by the
transition rates between the different intensity periods.
In references [18,20,22] they were calculated for different
model level systems and different numbers of atoms us-
ing a perturbation approach based on the Bloch equation
of the corresponding systems. This approach will be illus-
trated in the following by applying it to the simple case
of a single three level system in a D-type configuration as
depicted in Figure 2.

The Bloch equations can be written in the compact
form [23]

ρ̇ = − i
�

[
Hcondρ − ρH†

cond

]
+ R(ρ) (1)

where Hcond is the conditional Hamiltonian of the quan-
tum jump approach [24], for this system given by

Hcond =
�

2i
[
(A2+A3)|3〉〈3|+A1|2〉〈2|

]
+

�Ω3

2
[|1〉〈3|+|3〉〈1|]

(2)
and R(ρ) is the the reset state,

R(ρ) = A1|1〉〈2|ρ|2〉〈1|+A2|2〉〈3|ρ|3〉〈2|+A3|1〉〈3|ρ|3〉〈1|.
(3)

The Rabi frequency Ω3 and the Einstein coefficients A1,
A2, A3 are subject to the condition

Ω3, A3 � A1, A2. (4)

A detuning of the laser has been neglected for simplic-
ity. If the small optical parameters A1, A2 are neglected
the system splits into independent subspaces. They are
given by

S0 = {|2〉}, S1 = {|1〉, |3〉}. (5)
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These subspaces Si can be associated with the periods of
intensity Ii in the sense that in a period Ii the system is
mostly in the subspace Si. Taking a state ρ0,i in one of
the subspaces Si at a time t0 we calculate the state at
a time t0 + ∆t later in perturbation theory with respect
to the small parameters. The time interval ∆t used here
should be long compared to the mean time between the
emission of two photons but short compared to the length
of the intensity periods,

A−1
3 , Ω−1

3 � ∆t � A−1
1 , A−1

2 . (6)

For the calculation the Bloch equation is written in a Li-
ouvillean form,

ρ̇ = L ρ = {L0(A3, Ω3) + L1(A1, A2)}ρ . (7)

The density matrix at time t0 + ∆t is then given by [18]

ρ(t0 + ∆t, ρ0,i) = ρss,i +
∫ ∆t

0

dτ eL0τL1ρss,i , (8)

where ρss,i is the quasi-steady state in subsystem Si, i.e.
a steady state of L0. One can write

L1ρss,i =
1∑

j=0

αijρss,j∆t + ρ̃, (9)

with ρ̃ containing the contributions from the eigenstates
of L0 for non-zero eigenvalues. This leads to [20]

ρ(t + ∆t, ρi) = ρss,i +
1∑

j=0

αijρss,j∆t + (ε− L0)−1ρ̃. (10)

The last term can be neglected and the coefficient αij

can therefore be interpreted as transition rate pij from
intensity period Ii to period Ij . They can be calculated by
means of the dual eigenstates for eigenvalue 0 of L0 [20].
For a single D system the quasi-steady states are given by

ρss,0 = |2〉〈2|, (11)

ρss,1 =
1

A2
3 + 2Ω2

3

[
(A2

3 + Ω2
3)|1〉〈1| + Ω2

3 |3〉〈3|

+ iA3Ω3|1〉〈3| − iA3Ω3|3〉〈1|
]

(12)

for the dark and the light period respectively. The corre-
sponding dual states are

ρ0
ss = |2〉〈2|, and ρ1

ss = |1〉〈1| + |3〉〈3|. (13)

From (11) and (12) one finds

L1ρss,0 = −A1|2〉〈2| + A1|1〉〈1| (14a)

and

L1ρss,1 = − A2
Ω2

3

A2
3 + 2Ω2

3

|3〉〈3| + A2
Ω2

3

A2
3 + 2Ω2

3

|2〉〈2|

− iA2

2
A3Ω3

A2
3 + 2Ω2

3

(|1〉〈3| − |3〉〈1|) . (14b)

The transition rates are then calculated from

pij = αij = Tr(ρj†
ss L1ρss,i) (15)

as

p01 = α01 = A1 (16)

and

p10 = α10 =
A2Ω

2
3

A2
3 + 2Ω2

3

, (17)

in agreement with the direct calculation of the transition
rates via the quantum jump approach.

3 New simplified approach

Due to the increased number of levels involved, a calcu-
lation of the transition rates for three dipole-interacting
four-level systems would, although in principal feasible
with the methods introduced above, be even more labori-
ous than for three three-level systems. It is, however, possi-
ble to read off the transition rates without having to carry
out the full calculation. One only needs the quasi-steady
states of the corresponding subsystems. In following this
simpler approach will be presented.

By looking at equation (14) one realizes that the last
step in the calculation, namely the projection onto the
dual eigenstates, although formally more satisfactory, was
actually not necessary in order to gain the final result. The
transition rates are already present as prefactors for some
of the density matrix elements. In fact, L1 can be inter-
preted as a transition operator. Applying it to some state
of the system yields the density matrix elements which
are modified by the weak decays multiplied by the corre-
sponding decay rates. They are positive for density ma-
trix element which gain population and negative for those
which loose population due to the decay. In the case in
which one started with ρss,0 = |2〉〈2| one therefore has a
term −A1|2〉〈2|, which accounts for the loss of population
of level |2〉, and a term A1|1〉〈1| for the corresponding gain
of population in the ground state. When starting with ρss,1

the Einstein coefficient A2 for the decay from |3〉 to |2〉 has
an additional factor Ω2

3/(A2
3 + 2Ω2

3) for the quasi-steady
state population of level |3〉. The last two terms in equa-
tion (14b) are due to the decay of the coherences between
|1〉 and |3〉.

From these considerations one is lead to a simple
scheme for the evaluation of the transition rates. First
one has to identify the different independent subspaces for
vanishing weak decay rates and calculate the quasi-steady
states in these subspaces as in the above Bloch equation
approach. For a single D system these are the states ρss,0

and ρss,1 for the subsystems associated with the dark and
bright period, respectively. By looking at the level scheme
one can then determine the possible decay channels be-
tween the subsystems.In the present case this is a decay
by A2 from |3〉 to |2〉 and a decay by A1 from |2〉 to |1〉.
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|g〉
|s12〉|a12〉

|e2〉

|s23〉|a23〉

|e3〉

|s13〉|a13〉

Fig. 3. Level configuration of two D systems in the Dicke
basis. Transitions with rate A2 ± ReC2 (dotted arrows) and
transitions with rate A1 ±Re C1 (dashed arrows). Fast transi-
tions (with A3 ±ReC3) and line shifts due to detuning and to
ImCi are omitted.

The transition rates are then given by these decay rates
multiplied with the steady state population of the decay-
ing level.

Physically this is quite intuitive: the transition rates
are given by the corresponding decay rates multiplied by
the mean occupation probabilities of the levels involved.

The question is now if this approach can be extended to
more complicated systems, especially to dipole-interacting
D systems and to the four-level system for the description
of Ba+. This is indeed possible. For two dipole-interacting
D systems for example the possible decays can be read off
Figure 3 which shows the level scheme in the Dicke basis
given by

|g〉 = |1〉|1〉, |e2〉 = |2〉|2〉, |e3〉 = |3〉|3〉
|sij〉 =

1√
2

(|i〉|j〉 + |j〉|i〉),

|aij〉 =
1√
2

(|i〉|j〉 − |j〉|i〉) . (18)

The easiest case is the transition rate p01 for a transition
from a dark period to a period of intensity I1. Here the
relevant transitions are from |e2〉 to |s12〉 and |a12〉. The
corresponding decay rates are A1 +ReC1 and A1−ReC1,
respectively, with the dipole-dipole coupling parameters
Ci given explicitly in reference [20]. The quasi-steady state
population of |e2〉 is unity, so the transition rate is p01 =
2A1, in agreement with the result of reference [20]. The
other transition rates are a bit more complicated. For p10

one has to take into account the decays from |s23〉 and
|a23〉 to |e2〉, for p12 the decays from |s23〉 and |a23〉 to |s13〉
and from |s12〉 and |a12〉 to |g〉, and for p21 the decays from
|e3〉 to |s23〉 and |a23〉 and from |s13〉 and |a13〉 to |s12〉
and |a12〉. Multiplying for each decay the decay rate by
the steady state population of the initial level and adding
up the different contributions then yields the same results
for the transition rates as obtained by the Bloch equation
approach in reference [20]. The same is also true for three
dipole-interacting D systems [22].

4 Three dipole-interacting four-level systems

An application of the simplified method to the four-level
system describing Ba+ is also possible. As depicted in Fig-
ure 1 the transition from a bright to a dark period is a two
step process for this system, first an excitation to level |4〉
by incoherent light with the rate W and then a decay to
level |2〉 with the Einstein coefficient A2. Instead of a single
Einstein coefficient one therefore has to use the product
of the incoherent transition rate W with the branching
ratio A2/(A2 + A4) for a decay from state |4〉 to state |2〉
for this transition. Then everything works as in the case
of the D systems and one confirms the results for a single
four-level system already known from the Bloch equation
approach [20].

Consequently it is also possible to obtain the transition
rates for three four-level systems which would be rather
involved to do with the Bloch equation approach. The
Bloch equations can be written in the compact form

ρ̇ = − i
�

[
Hcondρ − ρH†

cond

]
+ RW (ρ) + R(ρ) (19)

≡ {L0 + L1(A1, W )} ρ,

where RW (ρ) describes the incoherent driving as in refer-
ence [25] and is given by

RW (ρ) = W

3∑
i=1

(
S+

i4ρS−
i4 + S−

i4ρS+
i4

)
, (20)

with

S+
i1 = |2〉ii〈1|, S+

i2 = |4〉ii〈2|, S+
i3 = |3〉ii〈1|

S+
i4 = |4〉ii〈1|, and S−

ij = S+†
ij .

The conditional Hamiltonian, without detuning, and the
reset state in this case are given by

Hcond =
3∑

i=1

4∑
j=1

�

2i
AjS

+
ijS

−
ij +

3∑
i=1

�

2
[
Ω3S

−
i3 + h.c.

]

+
3∑

k,l=1
k<l

4∑
j=1

�

2i
C

(j)
kl

(
S+

kjS
−
lj + S+

ljS
−
kj

)
(21)

and

R(ρ) =
3∑

i=1

4∑
j=1

AjS
−
ijρS+

ij

+
3∑

k,l=1
k<l

4∑
j=1

Re C
(j)
kl

(
S−

kjρS+
lj + S−

ljρS+
kj

)
, (22)

where

C
(j)
kl =

3Aj

2
eia

(j)
kl

[
1

ia(j)
kl

(1 − cos2 θkl)

+

(
1

a
(j)2
kl

− 1

ia(j)3
kl

)
(1 − 3 cos2 θkl)

]
(23)
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is the coupling parameter which describes the dipole-
dipole interaction between atom k and atom l for the
transition connected with the Einstein coefficient Aj , with
θkl being the angle between the dipole moments and the
line connecting the atoms. The dimensionless parameter
a
(j)
kl = 2πrkl/λj is given by the inter-atomic distance rkl

multiplied by the wave number 2π/λj of this transition.
In order to get a maximal effect of the dipole-dipole inter-
action we assume as in [22] that the atoms form an equi-
lateral triangle (i.e. rkl = r) and that θkl = π/2. Then
C

(j)
kl becomes the Cj of reference [20].

The quasi-steady states are already known from the
calculations for three three-level systems. As in refer-
ence [22] one can use a symmetrized basis analogous to
the Dicke basis for two atoms. This leads to the states

|sijk〉 =
1√
6

(|i〉|j〉|k〉 + |j〉|k〉|i〉 + |k〉|i〉|j〉

+ |i〉|k〉|j〉 + |j〉|i〉|k〉 + |k〉|j〉|i〉), (24a)

|aijk〉 =
1√
6

(|i〉|j〉|k〉 + |j〉|k〉|i〉 + |k〉|i〉|j〉

− |i〉|k〉|j〉 − |j〉|i〉|k〉 − |k〉|j〉|i〉), (24b)

|bijk〉 =
1√
12

(
2|i〉|j〉|k〉 − |j〉|k〉|i〉 − |k〉|i〉|j〉

+ 2|i〉|k〉|j〉 − |j〉|i〉|k〉 − |k〉|j〉|i〉), (24c)

|cijk〉 =
1
2
(|j〉|k〉|i〉 − |k〉|i〉|j〉

− |j〉|i〉|k〉 + |k〉|j〉|i〉), (24d)

|dijk〉 =
1√
12

(
2|i〉|j〉|k〉 − |j〉|k〉|i〉 − |k〉|i〉|j〉

− 2|i〉|k〉|j〉 + |j〉|i〉|k〉 + |k〉|j〉|i〉), (24e)

|eijk〉 =
1
2
(|j〉|k〉|i〉 − |k〉|i〉|j〉

+ |j〉|i〉|k〉 − |k〉|j〉|i〉), (24f)

i < j < k; i, j, k = 1, . . . , 4, in the case where all three
atoms are in different states. For the remaining states one
gets for i, j = 1, . . . , 4, i �= j,

|sijj〉 =
1√
3

(|i〉|j〉|j〉 + |j〉|j〉|i〉 + |j〉|i〉|j〉) (25a)

|bijj〉 =
1√
6

(
2|i〉|j〉|j〉 − |j〉|j〉|i〉 − |j〉|i〉|j〉) (25b)

|cijj〉 =
1√
2

(|j〉|j〉|i〉 − |j〉|i〉|j〉) (25c)

if two atoms are in the same state and

|g〉 = |1〉|1〉|1〉, |ei〉 = |i〉|i〉|i〉 for i = 2, 3, 4 (26)

if all three atoms are in the same state. The quasi-steady
states for intensity periods I0 to I2 are, by symmetry,

given by

ρss,0 = |e2〉〈e2| (27a)

ρss,1 =
1
3
{
ρ1D
ss ⊗ |2〉22〈2| ⊗ |2〉33〈2|

+ |2〉11〈2| ⊗ ρ1D
ss ⊗ |2〉33〈2| + |2〉11〈2| ⊗ |2〉22〈2| ⊗ ρ1D

ss

}
(27b)

ρss,2 =
1
3

3∑
i=1

ρ2D
ss,2 ⊗ |2〉ii〈2|, (27c)

where ρ1D
ss is the quasi-steady state of one D system in

the {|1〉, |3〉} subspace and ρ2D
ss,2 is the quasi-steady state

in the subspace corresponding to double intensity of two D
systems. The state ρss,3 is rather complicated. Therefore
only the populations of the relevant levels will be given, i.e.

〈g|ρss,3|g〉 =
1
N

[{
(A2

3 + Ω2
3)

[
(A2

3 + Ω2
3)2 + 3A2

3B
]

+ 2A3

[|C3|2|A3 + C3|2 + B2
]}]

,

(28a)

〈s113|ρss,3|s113〉 =
Ω2

3

N

[
(A2

3 + Ω2
3)(3A2

3 + Ω2
3) + 3A2

3B
]

(28b)

〈b113|ρss,3|b113〉 = 〈c113|ρss,3|c113〉 =
Ω4

3

N
(A2

3 + Ω2
3)

(28c)

〈s133|ρss,3|s133〉 =
Ω4

3

N
(3A2

3 + Ω2
3) (28d)

〈e3|ρss,3|e3〉 = 〈b133|ρss,3|b133〉 = 〈c133|ρss,3|c133〉 =
Ω6

3

N
(28e)

with

N =
{
(A2

3 + 2Ω2
3)

[
(A2

3 + 2Ω2
3)2 + 3A2

3B
]

+2A3

[|C3|2|A3 + C3|2 + B2
]}

and
B = |C3|2 + 2A3Re C3.

Now the procedure is the same as described in the previous
section for two D systems and one obtains

p01 = 3A1 p12 = 2A1 p23 = A1 (29a)

and

p10 =
A2W (A2

3 + Ω2
3)

(A2 + A4)[A2
3 + 2Ω2

3 ]
(29b)

p21 =
2A2W

A2 + A4

[
A2

3 + Ω2
3

A2
3 + 2Ω2

3

+ 2 Re C3
A3

3Ω
2
3

[A2
3 + 2Ω2

3 ]3

]

(29c)

p32 =
3A2W

A2 + A4

[
A2

3 + Ω2
3

A2
3 + 2Ω2

3

+ 4 Re C3
A3

3Ω
2
3

[A2
3 + 2Ω2

3 ]3

]

(29d)
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Fig. 4. Double jump rate nDJ and for three dipole-interacting
four-level systems with experimental parameter values of ref-
erence [19]. Dotted line: independent systems. Cooperative ef-
fects are less than 1 for distances larger than λ3.

as transition rates up to first order in C3. The exact results
including detuning are given in the appendix. The approx-
imations to first order in C3 have the same structure as for
three dipole-interacting three-level systems given in refer-
ence [22]. Basically this means an increase of cooperative
effects by a factor of two compared to two atoms. In terms
of these transition rates the double and triple jump rate,
i.e. the rate of two or three subsequent jumps within a
short time window TW , are then given by [20]

nDJ = 2
p01p21p32(p01 + p12)

p21p32(p01 + p10) + p01p12(p23 + p32)
TW (30)

and

nTJ = 2
p01p10p12p21p23p32

p21p32(p01 + p10) + p01p12(p23 + p32)
T 2

W . (31)

In Figure 4 a plot of nDJ for the experimental parameter
values of reference [19] is shown. The effects of the dipole-
dipole interaction are negligibly small in particular for ex-
perimental distances of about ten times the wavelength λ3

of the strong transition. Without detuning ∆3, maximal
cooperative effects are obtained for Ω3 = 1

2

√√
5 − 1A3.

This case is shown in Figure 5 for the triple jump rate nTJ.
For inter-atomic distances larger than one wavelength λ3

of the strong transition cooperative effects are less than
5% and again rapidly decreasing for larger distances. For
non-zero detuning the maximally achievable effects have
about the same value. Also one has to bear in mind that,
as in reference [22], this result has to be seen as an upper
limit for all possible configurations in the trap. Large coop-
erative effects, i.e. enhancements of the double and triple
jump rate by several orders of magnitude, can therefore
not be explained by the dipole-dipole interaction. Further-
more one sees that the first order results of equation (29)
are a very good approximation to the exact transition
rates given in the appendix.

0 2 4 6 8 10
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4.4

4.6

4.8

n
T

J
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6
s−

1
]

r[λ3]

Fig. 5. Triple jump rate nTJ for three dipole-interacting
four-level systems. Parameter values as in Figure 4 except for

∆3 = 0 and Ω3 = 1
2

√√
5 − 1A3 for maximal effects. Dotted

line: independent systems, dashed line: up to first order. Co-
operative effects are less than 5% for distances larger than λ3.

5 V system and similar level schemes

From the previous results the question arises whether the
method presented here is also applicable to level systems
like the V system, i.e. systems in which the transition
between different light and dark periods results from a co-
herent excitation. It turns out that for these systems the
situation is much more complicated. For a single V sys-
tem for example, L1(Ω2) contains coherences between the
ground state |1〉 and the metastable state |2〉. Therefore
L1ρi has no component in the subspace of eigenstates of
L0 for eigenvalue zero and the state at time t0 +∆t in the
Bloch equation approach is thus given by [18]

ρ(t0 + ∆t, ρ0,i) = ρss,i + (ε − L0)−1L1ρss,i. (32)

An explicit evaluation of this expression for a single V sys-
tem starting with ρ1 not only leads to terms proportional
to the quasi-steady state population of the ground state
but also to terms proportional to the quasi-steady state
coherence between ground state and excited state.

The situation gets even more involved for dipole-
interacting V systems. Here the term (ε − L0)−1 gives
rise to additional factors which depend in a very compli-
cated way on C3. This is in contrast to the D and the
four-level system, for which the C3 dependence in the
transition rates is solely due to the C3 dependence of the
quasi-steady states. The physical reason for this is that
the efficiency of the laser driving is influenced by the dipole
interaction, for example via additional detunings. There-
fore the mechanism of jumps in the light intensity based
on laser driven transitions is much more complex than for
jumps based on spontaneous decay and incoherent driv-
ing so that the method outlined above is applicable only
in the latter case.

6 Conclusions

In this paper we have presented a simplified approach for
the calculation of the transition rates between periods of
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p10 =
A2W (A2

3 + Ω2
3 + 4∆2

3)
(A2 + A4)[A2

3 + 2Ω2
3 + 4∆2

3]
(33a)

p21 =
2A2W

A2 + A4

(A2
3 + Ω2

3 + 4∆2
3)(A2

3 + 2Ω2
3 + 4∆2

3) + (A2
3 + 4∆2

3)(|C3|2 + 2A3Re C3 − 4∆3Im C3)
(A2

3 + 2Ω2
3 + 4∆2

3)2 + (A2
3 + 4∆2

3)(|C3|2 + 2A3ReC3 − 4∆3Im C3)

=
2A2W

A2 + A4

[
A2

3 + Ω2
3 + 4∆2

3

A2
3 + 2Ω2

3 + 4∆2
3

+ 2 Re C3
A3Ω

2
3(A2

3 + 4∆2
3)

[A2
3 + 2Ω2

3 + 4∆2
3]3

− 4 Im C3
∆3Ω

2
3(A2

3 + 4∆2
3)

[A2
3 + 2Ω2

3 + 4∆2
3]3

]
+ O(C2

3 ). (33b)

p32 =
3A2W

A2 + A4

× (A2
3 + Ω2

3 + 4∆2
3)[(A2

3 + 2Ω2
3 + 4∆2

3)2+3(A2
3 + 4∆2

3)B] +2(A2
3 + 4∆2

3)[|C3|2|A3 − 2i∆3 + C3|2 + B(Ω2
3 + B)]

(A2
3 + 2Ω2

3 + 4∆2
3) [(A2

3 + 2Ω2
3 + 4∆2

3)2+3(A2
3 + 4∆2

3)B] + 2(A2
3 + 4∆2

3) [|C3|2|A3−2i∆3 + C3|2 + B2]

=
3A2W

A2 + A4

[
A2

3 + Ω2
3 + 4∆2

3

A2
3 + 2Ω2

3 + 4∆2
3

+ 4 Re C3
A3Ω

2
3(A2

3 + 4∆2
3)

[A2
3 + 2Ω2

3 + 4∆2
3]3

− 8 Im C3
∆3Ω

2
3(A2

3 + 4∆2
3)

[A2
3 + 2Ω2

3 + 4∆2
3]3

]
+ O(C2

3 ) (33c)

different intensity of a system of dipole-dipole interacting
atoms which show macroscopic quantum jumps in their
fluorescence. This method works for atoms with level con-
figurations in which the transition between the different
intensity periods is based on incoherent processes. Results
previously obtained with other methods are recovered by
the new approach.

In addition, the new method has allowed the calcula-
tion of the transition rates for three interacting four-level
systems modeling the the relevant level structure of Ba+

ions. This allows a direct comparison with the experiment
of reference [19]. This experiment reported an enhance-
ment of the double and triple jump rate by several orders
of magnitude and this was explained through cooperative
effects due to the dipole-dipole interaction between the
ions. With the present results it is seen that this cannot
be the explanation for the reported enhancement. Cooper-
ative effects can indeed be found for this system but they
are much smaller, namely only maximal 5% of the values
for independent atoms. For the parameter values of the
experiment they are practically absent.

Appendix A: Exact transition rates including
detuning

As mentioned above the transition rates between the dif-
ferent intensity periods can be calculated exactly in C3

and with inclusion of a possible detuning of the laser ∆3

with respect to the corresponding atomic transition. The
result for the downward rates is

see equations (33a–33c) above

with B = |C3|2+2A3ReC3−4∆3Im C3. The upward rates
of equation (29a) are already the exact results since they
are independent of C3 and ∆3.
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